
EE 553 Spring 2015 Final Project Report
University of Washington

Darrell Ross

June 14, 2015

1

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

Contents

1 Introduction 4

1.1 Problem Statement . 4

1.2 Coding Style . 4

2 Basic Economic Dispatch 5

2.1 Testing Data: Practice Problem Set 3 . 5

2.2 Test: Match Practice Problem Set 3 . 6

2.3 Test: Match Increasing Loads . 6

2.4 Test: Out of Bounds . 6

3 Dispatch with On and Off Status and Minimum Times 7

3.1 Test: Match Practice Problem Set 3 . 7

3.2 Test: On and Off Status in Practice Problem Set 3 7

3.3 Test: On and Off Status of Homework 4, Problem 2 8

3.4 Test: Minimum Up Time . 9

3.5 Test: Minimum Down Time . 10

3.6 Test: Minimum Up Time and Minimum Down Time 10

4 Dispatch with No Load Cost, Startup Costs, and Reserve 11

4.1 Test: Match Practice Problem Set 3 . 12

4.2 Test: Match Homework 4, Problem 2 . 12

4.3 Test: No Load Cost . 13

4.4 Test 3: Startup Cost . 13

4.5 Test 4: Reserve Percent . 13

5 Dispatch with Three–Segment Cost Curves 15

5.1 Test: Match Practice Problem Set 3 . 16

5.2 Test: Verify Three–Segment . 16

6 Comprehensive Test 17

6.1 Test: Match All Iterations of the Program . 18

7 A Note About Hot Start 20

8 Conclusions 21

8.1 Testing . 21

8.2 Working With Others . 21

2

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

A Appendix: Basic Economic Dispatch 23

A.1 Formulation: Power Minimums and Maximums . 23

A.2 Formulation: Load Generation Balance . 23

A.3 Formulation: Minimize Function . 23

A.4 Input File . 23

A.5 Code . 23

B Appendix: Dispatch with On and Off Status and Minimum Times 25

B.1 Formulation: On and Off Status . 25

B.2 Formulation: Minimum Times . 25

B.3 Formulation: Minimize Function . 27

B.4 Input File . 27

B.5 Code . 27

C Appendix: Dispatch with No Load Cost, Startup Costs, and Reserve 30

C.1 Formulation: No Load Cost . 30

C.2 Formulation: Startup Costs . 30

C.3 Formulation: Reserve . 30

C.4 Formulation: Minimize Function . 30

C.5 Input File . 31

C.6 Code . 31

D Appendix: Dispatch with Three–Segment Cost Curves 35

D.1 Formulation: Three–Segment Cost Curves . 35

D.2 Formulation: Minimize Function . 35

D.3 Input File . 36

D.4 Code . 36

3

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

1 Introduction

This report covers an analysis of my code for a Mixed Integer Linear Program (MILP) written in
FICO Xpress’s Mosel language. The code is designed to find the optimal economic dispatch for a
number of power generation units under a specific set of constraints.

I feel that the design of the project really requires a thorough report. If I were to report only
on results, then I could conceivably not understand the code at all. It is important to me that I
communicate clearly that I understand the code, how to write the constraints, and why they work.

Since there was a request for a concise report, I have broken my original report into a brief testing
portion followed by extensive details in the appendices.

This report moves in an iterative story–like format. The program is started as basic as possible and
tested. Then constraints are added one piece at a time and the model reverified in each step often
using previous steps to test them. The sections will flow in the following order because this is the
order that I wrote them in and it makes the most sense to me.

• Load Generation Balance and Minimum Power and Maximum Power
• On and Off Status, Minimum Up Times, and Minimum Down Times
• No Load Cost, Startup Costs, and Reserve
• Three–Segment Cost Curves

Each section will begin by explaining the variables needed for it followed by testing and verification.

1.1 Problem Statement

The problem statement was given as follows:

Write a Mixed Integer Linear Programming implementation of a Unit Commitment
program using the student version of Xpress.

1.2 Coding Style

A few notes about my coding style follow.

• Variables written in all upper–case letters are constants. Even if they are calculated constants,
they are written in all upper–case letters.
• Variables written in all lower–case letters are decision variables.
• Variables have a array dimension based on basic inputs H for hours, P for prices, and G for

generators. A variable with order “GxH” is a two–dimensional array that is G–by–H in size
where G and H are defined in the data set.

4

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

2 Basic Economic Dispatch

Constraints used in this stage:

• Unit Power Limits
• Load Generation Balance

Required variables for this stage are shown in Table 1.

Variable Order Type Description
H 1 integer number of hours
G 1 integer number of generators
HOURS H integer indexes for each hour
GENS G integer indexes for each generator
PMIN G real minimum power values
PMAX G real maximum power values
MARGINAL PRICE G real prices for one–segment cost curve
DEMAND H real load values
unit power GxH real power supplied by each generator

Table 1: Variables used in the Basic Economic Dispatch program.

2.1 Testing Data: Practice Problem Set 3

Testing at this stage uses the sample data from Practice Problem Set #3 from class, shown in Table
2 and Table 3.

Unit
Pmin

(MW)
Pmax

(MW)
Min Up
Time (h)

Min
Down

Time (h)

No–Load
Cost ($)

Marginal
Cost

($/MWh)

Start–up
Cost ($)

Initial
Status

A 120 200 8 6 300 20 1500 -10

B 50 100 4 4 150 30 300 +5

C 30 50 2 3 40 200 100 +3

D 10 20 2 3 50 100 50 +3

Table 2: Unit characteristics from Practice Problem Set 3.

Hour 1 2 3

Load 150 120 160

Table 3: Power demand per time period from Practice Problem Set 3.

5

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

2.2 Test: Match Practice Problem Set 3

With this basic information, it is clear that generation unit A can meet the demand every period
and is the cheapest option. The input and output is shown below.

Input

G:[4]

H:[3]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

Output

Cost Total: $8600

H1:Cost:$3000

P1:150MW; P2:0MW; P3:0MW; P4:0MW;

H2:Cost:$2400

P1:120MW; P2:0MW; P3:0MW; P4:0MW;

H3:Cost:$3200

P1:160MW; P2:0MW; P3:0MW; P4:0MW;

A total cost of $8600.00 is correct. In the Practice Problem Set 3 solutions, the final optimal result
is $11000.00 but Practice Problem Set 3 included startup costs and no load costs, which, when
accounted for, make up the difference.

2.3 Test: Match Increasing Loads

Leaving other inputs the same but increasing the loads so that each hour would need to use the
next generator to meet its demand, the program correctly utilizes the generators as shown in the
following results.

G:[4]

H:[4]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[200,300,350,370]

Cost Total: $30000

H1:Cost:$4000

P1:200MW; P2:0MW; P3:0MW; P4:0MW;

H2:Cost:$7000

P1:200MW; P2:100MW; P3:0MW; P4:0MW;

H3:Cost:$9000

P1:200MW; P2:100MW; P3:50MW; P4:0MW;

H4:Cost:$10000

P1:200MW; P2:100MW; P3:50MW; P4:20MW;

This makes sense because the costs increase in the order A, B, C, D.

2.4 Test: Out of Bounds

To verify the program fails at the right points. Load values exceeding available supply were also
tested and resulted in the program correctly failing to converge. Failure to converge results in zeros
for all outputs as follows:

G:[4]

H:[4]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[100,200,600]

Cost Total: $0

H1:Cost:$0

P1:0MW; P2:0MW; P3:0MW; P4:0MW;

H2:Cost:$0

P1:0MW; P2:0MW; P3:0MW; P4:0MW;

H3:Cost:$0

P1:0MW; P2:0MW; P3:0MW; P4:0MW;

6

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

3 Dispatch with On and Off Status and Minimum Times

Constraints added in this stage:

• On and Off Status
• Minimum Up Time and Minimum Down Time

Required variables for this stage are shown in Table 4. New variables are highlighted in yellow.

Variable Order Type Description
H 1 integer number of hours
G 1 integer number of generators
HOURS H integer indexes for each hour
GENS G integer indexes for each generator
PMIN G real minimum power values
PMAX G real maximum power values
MARGINAL PRICE G real prices for one–segment cost curve
DEMAND H real load values
unit power GxH real power supplied by each generator
M 1 integer large number for clever constraints
MIN UP G integer minimum up time for generators
MIN DOWN G integer minimum down time for generators
STATUS INIT G integer initial up and down time for generators
unit on GxH binary generators on or off
actual power GxH real power supplied by each generator that is on

Table 4: Variables used in the Dispatch with On and Off Status and
Minimum Times. New variables are highlighted yellow.

3.1 Test: Match Practice Problem Set 3

When introducing new constraints, the first test is always to see if the function will match the
previous version given input which does not effect change with the new constraints. Setting MIN UP
and MIN DOWN to 1 hour for each generator and setting STATUS INIT to -1 (down for one hour)
for each generator eliminates the effect of both On and Off Status and Minimum Times.

G:[4]

H:[3]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

MIN_UP:[1,1,1,1]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,-1,-1]

Cost Total: $8600

H1:Cost:$3000

P1:150MW; P2:0MW; P3:0MW; P4:0MW;

H2:Cost:$2400

P1:120MW; P2:0MW; P3:0MW; P4:0MW;

H3:Cost:$3200

P1:160MW; P2:0MW; P3:0MW; P4:0MW;

3.2 Test: On and Off Status in Practice Problem Set 3

For the following tests of On and Off Status, the following inputs are assumed and only the MIN UP,
MIN DOWN, and STATUS INIT are changed each time.

7

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

G:[4]

H:[3]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

Printing the on and off status in binary numbers for each time period with inputs on the left and
results on the right, a match to the Basic Economic Dispatch is shown here:

MIN_UP:[1,1,1,1]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,-1,-1]

1000

1000

1000

3.3 Test: On and Off Status of Homework 4, Problem 2

The data from Homework 4, Problem 2 is shown in Table 5 and Table 6.

Unit
Pmin

(MW)
Pmax

(MW)
Min Up
Time (h)

Min
Down

Time (h)

No–Load
Cost ($)

Marginal
Cost

($/MWh)

Start–up
Cost ($)

Initial
Status

A 180 250 3 3 0 10 1000 -5

B 70 100 2 2 0 12 600 +3

C 10 50 1 1 0 20 150 +3

Table 5: Unit characteristics from Homework 4, Problem 2.

Hour 1 2 3
Load 320 250 260

Table 6: Power demand per time period from Homework 4, Problem 2.

8

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

Testing On and Off Status with this data produces results which match one possible optimal path
solution, that of part e from the homework.

H:[3]

G:[3]

PMIN:[180,70,10]

PMAX:[250,100,50]

MARGINAL_PRICE:[10,12,20]

DEMAND:[320,250,260]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

Cost Total: $8540

H1:Cost:$3340

P1:250MW; P2:70MW; P3:0MW;

H2:Cost:$2500

P1:250MW; P2:0MW; P3:0MW;

H3:Cost:$2700

P1:250MW; P2:0MW; P3:10MW;

110

100

101

The cost for this solution in the Homework was $9690 but that included $1150 in startup costs
which makes up the difference here.

3.4 Test: Minimum Up Time

With On and Off Status verified as functional, I can test Minimum Up Time more thoroughly. This
is done using Practice Problem Set 3 since the results are more predictable and easier to see.

Initial Problem Results
Restating the initial results with only the new inputs, we had the following:

MIN_UP:[1,1,1,1]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,-1,-1]

1000

1000

1000

Up Time Boundary
Setting the Minimum Up Time of Unit 4 to 4 hours and with an initial status of up for only 1 hour
should force it to be on for three hours and effects other generators which will need to compensate
as shown here in the results:

MIN_UP:[1,1,1,4]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,1,1]

1001

0101

1001

Setting the Minimum Up Time of Unit 3 to 2 hours and giving it an initial up time of 1 hour should
force it to be on for at least the first hour:

MIN_UP:[1,1,2,4]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,1,1]

0111

0101

1001

Since Units 3 and 4 were forced to be on in the first hour, their minimum output sums to 40MW
which is only 110MW below the demand for period 1. Since Unit 1 has a PMIN of 120MW, it could
not be used and that is reflected in the output. If I set this for all generators, it causes the problem
to fail to converge because the sum of the minimum power outputs is 210MW which exceeds the
demand in all three hours.

9

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

3.5 Test: Minimum Down Time

Minimum Down Time is very similar in form and theory to Minimum Up Time but it is possible
that the constraints have bugs so it is good to perform more tests.

Down Time Boundary
For Minimum Down Time, I set Unit A minimum down time to 2 hours with an initial down status
of 1 hour. This means it cannot be turned on until Period 2 and the results show it is working:

MIN_UP:[1,1,1,1]

MIN_DOWN:[2,1,1,1]

STATUS_INIT:[-1,-1,-1,-1]

0110

1000

1000

3.6 Test: Minimum Up Time and Minimum Down Time

Combining the two can lead to interesting tests. Starting with the Minimum Up Time test where
Unit 4 was forced to be on the whole time:

MIN_UP:[1,1,1,4]

MIN_DOWN:[1,1,1,1]

STATUS_INIT:[-1,-1,1,1]

1001

0101

1001

Since Unit 1 turned off in Period 2, this is a good spot to introduce a Minimum Down Time
constraint to test them together. Setting a Minimum Down Time of 2 hours for Unit 1 should
create the same results as above except that Unit 1 will have to turn off for Period 3:

MIN_UP:[1,1,1,4]

MIN_DOWN:[2,1,1,1]

STATUS_INIT:[1,-1,-1,1]

0111

0101

1001

Even though this did not do what I expected based purely on on/off statuses, reviewing the total
costs tells me why. If Unit 1 was on, then the total cost would have been $12800 but with the
optimal result the program found, the total cost for the above results was $12600.

I can force the results I expected by adding a Minimum Up Time of 2 hours to Unit A with an
initial status of 1 hour up. This produces what I thought would be the transition:

MIN_UP:[2,1,1,4]

MIN_DOWN:[2,1,1,1]

STATUS_INIT:[1,-1,-1,1]

1001

0101

0111

And the total cost is $12800. This is an example of how the constraints and complexity of the
problem can easily get complicated quickly. In this case, my program found the right solution and
I am satisfied that it is functional so far.

10

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

4 Dispatch with No Load Cost, Startup Costs, and Reserve

Constraints added in this stage:

• No Load Cost
• Startup Costs
• Reserve

Required variables for this stage are shown in Table 7. New variables are highlighted in yellow.

Variable Order Type Description
H 1 integer number of hours
G 1 integer number of generators
HOURS H integer indexes for each hour
GENS G integer indexes for each generator
PMIN G real minimum power values
PMAX G real maximum power values
MARGINAL PRICE G real prices for one–segment cost curve
DEMAND H real load values
unit power GxH real power supplied by each generator
M 1 integer large number for clever constraints
MIN UP G integer minimum up time for generators
MIN DOWN G integer minimum down time for generators
STATUS INIT G integer initial up and down time for generators
STATUS INIT UP G integer calculated from STATUS INIT
STATUS INIT DOWN G integer calculated from STATUS INIT
UNITS INIT G integer calculated from STATUS INIT
unit on GxH binary generators on or off
actual power GxH real power supplied by each generator that is on
NO LOAD COST G real no load cost for each generator
STARTUP COST G real startup cost for each generator
RESERVE PERCENT 1 real percentage of demand to hold in reserve
unit started GxH binary generator started

Table 7: Variables used with the Dispatch with No Load Cost, Startup
Costs, and Reserve program. New variables are highlighted yellow.

11

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

4.1 Test: Match Practice Problem Set 3

To make sure the program matches the solution for Practice Problem Set 3 from Section 3.2, I
tested with inputs which did not effect the results. Notice that the unit started calculation is
clearly working. Unit A started in Period 1.

H:[3]

G:[4]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[0,0,0]

RESERVE_PERCENT:[0.0]

Cost Total: $8600

H1:Cost:$3000

P1:150MW; P2:0MW; P3:0MW; P4:0MW;

H2:Cost:$2400

P1:120MW; P2:0MW; P3:0MW; P4:0MW;

H3:Cost:$3200

P1:160MW; P2:0MW; P3:0MW; P4:0MW;

unit_on

0110(UNITS_INIT)

1000

1000

1000

unit_started

1000

0000

0000

4.2 Test: Match Homework 4, Problem 2

To make sure the program matches the solution for Homework 4, Problem 2 from Section 3.3,
I tested with inputs which did not effect the results. Notice in the results that the unit started
calculation is clearly working. Unit A started in Period 1 and Unit C started in Period 3.

H:[3]

G:[3]

PMIN:[180,70,10]

PMAX:[250,100,50]

MARGINAL_PRICE:[10,12,20]

DEMAND:[320,250,260]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[0,0,0]

RESERVE_PERCENT:[0.0]

Cost Total: $8540

H1:Cost:$3340

H2:Cost:$2500

H3:Cost:$2700

unit_on

011(UNITS_INIT)

110

100

101

unit_started

100

000

001

12

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

4.3 Test: No Load Cost

No Load Cost is very simple to test. The cost is added once for each generator each hour that it
is on. The previous test showed Unit A on for 3 hours, Unit B on for 1 hour, and Unit C on for
1 hour. By setting the NO LOAD COST to easy numbers, I can calculate what the differences
should be and they work out.

NO_LOAD_COST: [5,6,7]

STARTUP_COST: [0,0,0]

RESERVE_PERCENT: [0.0]

Cost Total: $8568 = 8540+28

H1:Cost:$3351 = 3340+11

H2:Cost:$2505 = 2500+5

H3:Cost:$2712 = 2700+12

4.4 Test 3: Startup Cost

To test Startup Cost, I can compare to my results from Homework 4, Problem 2, Part f. The results
match the solutions to the homework.1

H:[3]

G:[3]

PMIN:[180,70,10]

PMAX:[250,100,50]

MARGINAL_PRICE:[10,12,20]

DEMAND:[320,250,260]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[1000,600,150]

RESERVE_PERCENT:[0.0]

Cost Total: $9690

H1:Cost:$4340

P1:250MW; P2:70MW; P3:0MW;

H2:Cost:$2500

P1:250MW; P2:0MW; P3:0MW;

H3:Cost:$2850

P1:250MW; P2:0MW; P3:10MW;

110

100

101

4.5 Test 4: Reserve Percent

This test gets tricky because the reserve changes depending on the demand. Boundaries are the
easiest to test.

100% Reserve
Setting the Reserve requirement to 100% causes a failure to solve. This is expected because it
increases the demand requirement beyond the level that the generators can provide for.

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[1000,600,150]

RESERVE_PERCENT:[1.0]

Cost Total: $0

H1:Cost:$0

P1:0MW; P2:0MW; P3:0MW;

H2:Cost:$0

P1:0MW; P2:0MW; P3:0MW;

H3:Cost:$0

P1:0MW; P2:0MW; P3:0MW;

1I was very excited when I got this far as well.
13

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

20% Reserve
Setting the Reserve requirement to 20% means the generators must have 64MW, 50MW, and 52MW
for each period in reserve. This should cause the cost to go up because extra units will need brought
up to handle the extra reserve requirement. The results to do not disappoint.

H:[3]

G:[3]

PMIN:[180,70,10]

PMAX:[250,100,50]

MARGINAL_PRICE:[10,12,20]

DEMAND:[320,250,260]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[1000,600,150]

RESERVE_PERCENT:[0.2]

Cost Total: $9820

H1:Cost:$4440

P1:240MW; P2:70MW; P3:10MW;

H2:Cost:$2640

P1:180MW; P2:70MW; P3:0MW;

H3:Cost:$2740

P1:190MW; P2:70MW; P3:0MW;

unit_on

011(UNITS_INIT)

111

110

110

unit_started

100

000

000

These results make sense.

• In Period 1, Unit 3 had to be brought online in order to meet reserve constraints which meant
reducing Unit 1 by Unit 3’s minimum power since Unit 2 was already at minimum power.
• In Period 2, Unit 1 could not meet the 50MW reserve so the minimum power had to be

provided by Unit 2.
• In Period 3, the situation was the same as Period 2.

14

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

5 Dispatch with Three–Segment Cost Curves

Constraints added in this stage:

• Three–Segment Cost Curves

Required variables for this stage are shown in Table 8. New variables are highlighted in yellow.

Variable Order Type Description
H 1 integer number of hours
G 1 integer number of generators
HOURS H integer indexes for each hour
GENS G integer indexes for each generator
PMIN G real minimum power values
PMAX G real maximum power values
MARGINAL PRICE G real prices for one–segment cost curve
DEMAND H real load values
unit power GxH real power supplied by each generator
M 1 integer large number for clever constraints
MIN UP G integer minimum up time for generators
MIN DOWN G integer minimum down time for generators
STATUS INIT G integer initial up and down time for generators
STATUS INIT UP G integer calculated from STATUS INIT
STATUS INIT DOWN G integer calculated from STATUS INIT
UNITS INIT G integer calculated from STATUS INIT
unit on GxH binary generators on or off
actual power GxH real power supplied by each generator that is on
NO LOAD COST G real no load cost for each generator
STARTUP COST G real startup cost for each generator
RESERVE PERCENT 1 real percentage of demand to hold in reserve
unit started GxH binary generator started
P 1 integer number of segments in cost curve
PRICES P integer indexes for each cost curve
split power PxGxH real power for each segment of the generator

Table 8: Variables used with the Dispatch with Three–Segment Cost
Curves program. New variables are highlighted yellow.

15

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

5.1 Test: Match Practice Problem Set 3

The following inputs were used and the results matched. It is useful to look at the split power
results here to see how it is working.

H:[3]

G:[4]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST:[0,0,0]

STARTUP_COST:[0,0,0]

RESERVE_PERCENT:[0.0]

P:[3]

PRICE:[20,30,40,50,

20,30,40,50,

20,30,40,50]

Cost Total: $8600

P1:150=120+26.6667+3.33333+0

P2:50=50+0+0+0

P3:30=30+0+0+0

P4:10=10+0+0+0

P1:120=120+0+0+0

P2:50=50+0+0+0

P3:30=30+0+0+0

P4:10=10+0+0+0

P1:160=120+0+26.6667+13.3333

P2:50=50+0+0+0

P3:30=30+0+0+0

P4:10=10+0+0+0

In Period 1, Unit 1 is supplying 150MW where the minimum is 120MW and then the remaining
80MW is split into three sections of 26.666MW each. Since 30MW is needed, the first price is used
up completely at 26.66MW and the second is used partially at 3.33MW.

5.2 Test: Verify Three–Segment

To verify the soundness of the design, I created a simple input file which produces the situation
present in Homework 8, Problem 3. If the constraints were written correctly, then this should
produce values that match the Running Costs for that homework.

H:[6]

G:[1]

PMIN:[200]

PMAX:[500]

MARGINAL_PRICE:[0]

DEMAND:[200,200,300,400,500,200]

MIN_UP:[1]

MIN_DOWN:[1]

STATUS_INIT:[-1]

NO_LOAD_COST:[2496]

STARTUP_COST:[0]

RESERVE_PERCENT:[0.0]

P:[3]

PRICE:[12.66,13.26,13.86]

Cost Total: $22812

H1:Cost:$2496

H2:Cost:$2496

H3:Cost:$3762

H4:Cost:$5088

H5:Cost:$6474

H6:Cost:$2496

three-segment

P1:200=200+0+0+0

P1:200=200+0+0+0

P1:300=200+100+0+0

P1:400=200+100+100+0

P1:500=200+100+100+100

P1:200=200+0+0+0

Since there is only one generator, I left the power generation results out of the results display
because they have to match the demand. The hourly costs match my calculations from Homework
8, Problem 3.

16

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

6 Comprehensive Test

After testing each additional option in a vacuum, there are some limited tests that can be ac-
complished on the large sample data set. I cannot verify the answers precisely without doing the
problem first by hand and even then, I am likely to make mistakes by hand. However, I am confident
that my code works so that solving large problems will produce valid results.

I can also verify differences. For example, when No Load Cost is introduced, I should see an increase
similar to that shown in the test. Or when Hot Start is introduced, I should see the price difference
appear between $0 and $50 for a single Hot Start.

For this test, I used the sample project data provided and shown here in Table 9 and Table 10.

Unit
Pmin

(MW)
Pmax

(MW)
Min Up

Time (h)

Min
Down

Time (h)

No–Load
Cost ($)

Marginal
Cost

($/MWh)

Hot
Start–up
Cost ($)

Cold
Start–

up Cost
($)

Initial
State

1 25 100 1 1 0 15.4500 50.00 500.00 2

2 50 150 1 1 0 17.3467 60.00 700.00 -3

3 60 200 3 3 0 26.9000 100.00 800.00 -5

4 0 250 2 1 0 36.9000 90.00 900.00 -7

Table 9: Unit characteristics from the sample project data.

Hour 1 2 3 4 5 6
Load 250 200 390 250 130 300

Table 10: Power demand per time period from the sample project data.

17

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

6.1 Test: Match All Iterations of the Program

First, I ran the program with inputs based on the sample data which would produce results that
could match the program as it appeared in Dispath with On and Off Status and Minimum Times
and Dispath with No Load Cost, Startup Costs, and Reserve and Dispath with Three–Segment Cost
Curves.

Notice the inputs had to be modified here so that all three programs would produce the same results
and it worked.

H:[6]

G:[4]

P:[3]

PMIN:[25,50,60,0]

PMAX:[100,150,200,250]

MARGINAL_PRICE:[15.45,17.3467,26.9,36.9]

DEMAND:[250,200,390,250,130,300]

MIN_UP:[1,1,3,2]

MIN_DOWN:[1,2,2,1]

STATUS_INIT:[2,-3,-5,-7]

NO_LOAD_COST:[0,0,0,0]

STARTUP_COST:[0,0,0,0]

RESERVE_PERCENT:[0.0]

PRICE:[15.45,17.3467,26.9,36.9,

15.45,17.3467,26.9,36.9,

15.45,17.3467,26.9,36.9]

Cost Total: $28342.9

H1:Cost:$4720.2

P1:100MW; P2:90MW; P3:60MW; P4:0MW;

H2:Cost:$3871.84

P1:90MW; P2:50MW; P3:60MW; P4:0MW;

H3:Cost:$7913

P1:100MW; P2:150MW; P3:140MW; P4:0MW;

H4:Cost:$4147

P1:100MW; P2:150MW; P3:0MW; P4:0MW;

H5:Cost:$2103.34

P1:80MW; P2:50MW; P3:0MW; P4:0MW;

H6:Cost:$5587.54

P1:100MW; P2:140MW; P3:60MW; P4:0MW;

unit_on

1000(UNITS_INIT)

1111

1111

1111

1101

1101

1111

unit_started

0111

0000

0000

0000

0000

0010

There is a somewhat odd bit worth noting here. In Period 1, Unit 1 is set to 0MW but is also set
to ON. This is because it has a minimum power of 0MW so it is possible to set it to ON with no
power production.

18

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

Put in actual Startup Costs
With the Startup Costs updated from the table, the cost should increase and it does. Also, because
the later generators now cost so much more to turn on, notice that the program doesn’t utilize them
as much as it did in the first run.

Cost Total: $30475.7

H1:Cost:$4847

P1:100MW; P2:150MW; P3:0MW; P4:0MW;

H2:Cost:$3279.67

P1:100MW; P2:100MW; P3:0MW; P4:0MW;

H3:Cost:$8713

P1:100MW; P2:150MW; P3:140MW; P4:0MW;

H4:Cost:$4720.2

P1:100MW; P2:90MW; P3:60MW; P4:0MW;

H5:Cost:$2828.27

P1:0MW; P2:70MW; P3:60MW; P4:0MW;

H6:Cost:$6087.54

P1:100MW; P2:140MW; P3:60MW; P4:0MW;

unit_on

1000(UNITS_INIT)

1100

1100

1110

1110

0110

1110

unit_started

0100

0000

0010

0000

0000

1000

Add Price Differences
Adding in price differences means that each generator will cost more for more higher power. This should result in
the program utilizing lower power supply first since lower costs less. I can exaggerate this effect by making the upper
third of the power for each generation unit cost a very large amount.

PRICE:[15,17,26,36,

20,25,30,40,

30,35,40,50]

Cost Total: $34746.7

H1:Cost:$6518.33

P1:75MW; P2:115MW; P3:60MW; P4:0MW;

H2:Cost:$4760

P1:56.6667MW; P2:83.3333MW; P3:60MW; P4:0MW;

H3:Cost:$9123.33

P1:100MW; P2:136.667MW; P3:153.333MW; P4:0MW;

H4:Cost:$5018.33

P1:75MW; P2:115MW; P3:60MW; P4:0MW;

H5:Cost:$2110

P1:50MW; P2:80MW; P3:0MW; P4:0MW;

H6:Cost:$7216.67

P1:100MW; P2:150MW; P3:-1.42109e-013MW; P4:50MW;

The three–segment cost curves starting at near the original price definitely end up costing more.

19

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

7 A Note About Hot Start

I originally formulated a Hot Start solution and I still feel the constraints are valid but I am quite
burnout out on writing this report.

Hot Start wasn’t too bad to formulate because I already had the UNIT STARTED data and the
only pattern search for my Hot Start algorithm, which uses a 1–hour hot–start and everything else
being a cold–start, is to look for the pattern 101. Since UNIT STARTED is the 01 of that pattern,
I needed only to look for the pattern where u(t)=1 and UNIT STARTED(t+2)=1.

In the interest of my own sanity and spending more time with my family though, I did not complete
testing of this feature. I assure you that I did get it working and you can verify that I formulated
my constraints correctly as I have included them just below.

I thought it worth including this brief bit just in case it would net me some extra credit!

forall(g in GENS, h in HOURS|h=1) unit_hot_started(g,h) >= unit_started(g,h)-(1-DOWN_FOR_ONE_HOUR(g))

forall(g in GENS, h in HOURS|h=2) unit_hot_started(g,h) >= unit_started(g,h)-(1-UNITS_INIT(g))

forall(g in GENS, h in HOURS|h>2) unit_hot_started(g,h) >= unit_started(g,h)-(1-unit_on(g,h-2))

forall(g in GENS, h in HOURS) unit_cold_started(g,h) >= unit_started(g,h)-unit_hot_started(g,h)

20

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

8 Conclusions

This project was challenging for two primary reasons. First, the timing was short and Mosel was
a new language for me. Learning the syntax and idiosyncrasies of a new language in three weeks
is crazy. Second, while I have done this sort of optimization in the past, it has been quite some
time. I had forgotten the clever ways to write constraints so that the minimization function ends
up taking care of the solution for me. Bits of my MS in Math began to come back to me near the
end and, after some assistance from Yushi on the Minimum Times, I was able to write the rest of
the constraints on my own.

8.1 Testing

I write software for a living. If given ample time, I would write exhaustive unit tests for each
constraint added. As it stands, a “concise” report was requested and we were not given very much
time. In my opinion, the phrases “concise” and “thoroughly test” do not go together. All there was
room for was some light testing.

I have tested my program far more than I have reported here. In place of more thorough testing, I
have described the formulation in the very extensive appendices in hopes that it demonstrates my
clear understanding of the subject matter.

8.2 Working With Others

I devoted a considerable amount of time to helping others learn the Mosel language and understand
how to write the constraints. Given many other students’ unfamiliarity with writing code, I think
many of them may have adopted my coding style. I avoided giving my code out but I did write
some code on whiteboards while explaining concepts. I would not be surprised if my code style
works its way into their reports.

21

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

References

[1] FICO. FICO Xpress Optimization Suite: Getting Started with Xpress. June 2, 2009. url: http:
//www.fico.com/en/node/8140?file=5136.

[2] FICO. FICO Xpress Optimization Suite: Xpress–Mosel User guide. June 3, 2009. url: http:
//www.fico.com/en/wp-content/secure_upload/Xpress-Mosel-User-Guide.pdf.

[3] FICO. Mosel Language: Quick Reference. Jan. 27, 2010. url: http://www.fico.com/en/
node/8140?file=5194.

[4] Frederick S. Hillier. Introduction to Operations Research. 8th ed. McGraw-Hill Science/Engineering/Math,
July 2004. isbn: 9780072527445. url: http://amazon.com/o/ASIN/0072527447/.

[5] Daniel S. Kirschen and Goran Strbac. Fundamentals of Power System Economics. 1st ed.
Wiley, May 2004. isbn: 9780470845721. url: http://amazon.com/o/ASIN/0470845724/.

[6] Wayne L. Winston and Munirpallam Venkataramanan. Introduction to Mathematical Program-
ming: Operations Research, Vol. 1 (Book & CD-ROM). 4th. Thomson Learning, Oct. 2002.
isbn: 9780534359645. url: http://amazon.com/o/ASIN/0534359647/.

22

http://www.fico.com/en/node/8140?file=5136
http://www.fico.com/en/node/8140?file=5136
http://www.fico.com/en/wp-content/secure_upload/Xpress-Mosel-User-Guide.pdf
http://www.fico.com/en/wp-content/secure_upload/Xpress-Mosel-User-Guide.pdf
http://www.fico.com/en/node/8140?file=5194
http://www.fico.com/en/node/8140?file=5194
http://amazon.com/o/ASIN/0072527447/
http://amazon.com/o/ASIN/0470845724/
http://amazon.com/o/ASIN/0534359647/

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

A Appendix: Basic Economic Dispatch

A.1 Formulation: Power Minimums and Maximums

The maximum and minimum power constraints simply set the bounds for the unit power decision
variables. Since unit power is the minimization decision variable, it has to be possible for it to
be zero (note this will change once Unit On and Off Status is introduced). For this reason, the
is semcont constraint is used to say that unit power can be 0 or greater than PMIN :

forall(g in GENS, h in HOURS) do

unit_power(g,h) is_semcont PMIN(g)

unit_power(g,h) <= PMAX(g)

end-do

A.2 Formulation: Load Generation Balance

For this section, I only need the sum of the unit power of all generators for each hour to be equal
to the DEMAND.

forall(h in HOURS) sum(g in GENS) unit_power(g,h) = DEMAND(h)

A.3 Formulation: Minimize Function

The minimization function at this stage is fairly basic, minimizing for cost for each hour. Normally,
this would involve summing up across both hour and generator at the same time except that I want
to look at hourly totals so first I sum those up:

forall(h in HOURS)

HOURLY_POWERCOST(h):=sum(g in GENS) MARGINAL_PRICE(g)*unit_power(g,h)

And then I write a minimization for the HOURLY POWERCOST :

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

A.4 Input File

G:[4]

H:[3]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

A.5 Code

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress-Optimizer

!DATAFILE:="../data/01.txt"

DATAFILE:="../data/02_sample_data.txt"

(!---CONSTANT---!)
23

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

declarations

H: integer

G: integer

end-declarations

initializations from DATAFILE

H G

end-initializations

declarations

HOURS = 1..H

GENS = 1..G

PMIN: array(GENS) of real

PMAX: array(GENS) of real

MARGINAL_PRICE: array(GENS) of real

DEMAND: array(HOURS) of real

end-declarations

! Read Data

initializations from DATAFILE

PMIN PMAX MARGINAL_PRICE DEMAND

end-initializations

(!---VARIABLES---!)

declarations

unit_power: array(GENS,HOURS) of mpvar

end-declarations

(!---CONSTRAINTS---!)

! power min and max

forall(g in GENS, h in HOURS) do

unit_power(g,h) is_semcont PMIN(g)

unit_power(g,h) <= PMAX(g)

end-do

! Load Generation Balance - Slide 47

forall(h in HOURS) do

sum(g in GENS) unit_power(g,h) = DEMAND(h) ! Load

end-do

(!---OBJECTIVES---!)

forall(h in HOURS) do

HOURLY_POWERCOST(h):=sum(g in GENS)(MARGINAL_PRICE(g)*unit_power(g,h))

end-do

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

(!---SOLUTION PRINTING---!)

writeln("Cost Total: $", getobjval)

forall(h in HOURS) do

write("H",h,":Cost:$",getsol(HOURLY_POWERCOST(h)))

writeln("")

forall(g in GENS) do

write("P",g,":",getsol(unit_power(g,h)),"MW; ")

end-do

writeln("")

end-do

end-model

24

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

B Appendix: Dispatch with On and Off Status and Mini-

mum Times

B.1 Formulation: On and Off Status

The Unit On and Off Status constraint itself is simple. We simply need a binary variable which is 1 whenever the
power produced is greater than 0. This is the first use of “big M” notation:

forall(g in GENS, h in HOURS) unit_on(g,h)*M >= actual_power(g,h)

Note that there is a caveat to using these constraints. If the minimum power of a generator is 0
MW and that generator has a no–load–cost of $0.00, then it is possible for the program to set the
generator to “on” with 0 power. This can be confusing but is avoidable if a no–load–cost is provided
for each generator which is a reasonable solution.

The introduction of Unit On and Off Status also means that we now must multiply the unit on
binary decision variable with the unit power decision variable to get the actual power output. Since
this would constitute multiplying two decision variables by each other and that is not linear, we
have to use “big M” notation in a clever way to get the actual power output which is stored in a
new variable named actual power.

forall(g in GENS, h in HOURS) do

actual_power(g,h) <= M*unit_on(g,h)

actual_power(g,h) >= 0

actual_power(g,h) <= unit_power(g,h)

actual_power(g,h) >= unit_power(g,h)-(1-unit_on(g,h))*M

end-do

The “big M” notation is a very clever idea. In this case, it is designed to work for the two values
that unit on can take: 1 and 0. This is best illustrated with the following example where M = 1000
and unit power = 100.

actual power <= 0

actual power >= 0

actual power <= 100

actual power >= −900

actual power <= 1000

actual power >= 0

actual power <= 100

actual power >= 100

The left side shows the results when unit on is zero while the right side shows when unit on is one.
When unit on = 0, the first two constraints make certain actual power = 0. When unit on = 1,
the last two constraints make certain actual power = unit power = 100.

B.2 Formulation: Minimum Times

The Unit On and Off constraint is not very interesting to test by itself. For that reason, and in the
interest of conciseness, I chose to include Minimum Up Time and Minimum Down Time constraints
in the same file. Also, Minimum Times constraints make particularly heavy use of the unit on array.

Minimum Times were the most difficult constraints to write. I spent nearly a week struggling with
them before getting assistance from Yushi. As it turns out, my problem was that I was trying to
write constraints that easily worked for everything all at once. Instead, the way we do it is to use
the advantage of loops to generate the necessary constraints exhaustively.

25

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

To explain this better, I will formulate the Minimum Up Time constraints for a single hour for a
single generator. For this example, the generator has a minimum up time of 3 and we have 4 hours
total. If the generator is turned on at hour 1, then we must constrain hours 2 and 3 to be on as
well. This scenario is shown in 11.

0 1 2 3 4
0 1 1 1 x

Table 11: A demonstration of how the Minimum Up Time constraints
are determined. The numbers on the top represent time in hours with 1
being the first our and the 0 and less being hours prior.

Writing constraints Table 11 where u(h) is the on or off value at each hour h, we get:

u(1)− u(0) >= u(1)→ 1− 0 >= u(1)

u(1)− u(0) >= u(2)→ 1− 0 >= u(2)

u(1)− u(0) >= u(3)→ 1− 0 >= u(3)

As shown to the right of the arrows, the only way for the inequalities to hold true is if the entries
on the right are equal to 1.

This pattern can be continued for each possible hour where a generator turns on. Then, we need to
write constraints based on the initial up–time of the generator. The three possible representations
are shown in Table 11 in the second part of the table. The first row represents “on for one hour”,
the second row “on for two hours”, and the third “on for three hours”. The constraints for the first
option, “on for one hour” follow:

u(0) <= u(1)

u(0) <= u(2)

It is important to note that the number of constraints to be written for “on for n hours” depend
on MIN UP and STATUS INIT UP. With a good use of Mosel loops statements, the following
constraints were created:

forall(g in GENS) do ! MINIMUM UPTIME - BOUNDARY

lim:=minlist(MIN_UP(g),H)

forall(i in 1..lim) unit_on(g,1) - UNITS_INIT(g) <= unit_on(g,i)

init_lim:=minlist(MIN_UP(g) - STATUS_INIT_UP(g),H)

forall(i in 1..init_lim) UNITS_INIT(g) <= unit_on(g,i)

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM UPTIME - MAIN

lim:=minlist(h+MIN_UP(g)-1,H)

forall(i in h..lim) unit_on(g,h) - unit_on(g,h-1) <= unit_on(g,i)

end-do

forall(g in GENS) do ! MINIMUM DOWNTIME - BOUNDARY

lim:=minlist(MIN_DOWN(g),H)

forall(i in 1..lim) UNITS_INIT(g) - unit_on(g,1) <= 1-unit_on(g,i)

init_lim:=minlist(MIN_DOWN(g) - STATUS_INIT_DOWN(g),H)

forall(i in 1..init_lim) UNITS_INIT(g) >= unit_on(g,i)

end-do

26

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM DOWNTIME - MAIN

lim:=minlist(h+MIN_DOWN(g)-1,H)

forall(i in h..lim) unit_on(g,h-1)-unit_on(g,h) <= 1-unit_on(g,i)

end-do

B.3 Formulation: Minimize Function

With On and Off Status and Minimum Times added to the program, the minimize function needs
to be updated. Since the unit on decision variables are contained within the actual power decision
variables, only the HOURLY POWERCOST summation needs modified. The minor change is
highlighted in the following code:

forall(h in HOURS)

HOURLY_POWERCOST(h):=sum(g in GENS) MARGINAL_PRICE(g)*actual_power(g,h)

And the actual minimization function requires no changes:

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

B.4 Input File

G:[4]

H:[3]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]MIN_UP:[2,1,1,4]

MIN_DOWN:[2,1,1,1]

STATUS_INIT:[1,-1,-1,1]

B.5 Code

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress-Optimizer

!DATAFILE:="../data/02.txt"

!DATAFILE:="../data/02_hwk4_2.txt"

DATAFILE:="../data/03_sample_data.txt"

(!---CONSTANT---!)

declarations

H: integer

G: integer

end-declarations

initializations from DATAFILE

H G

end-initializations

declarations

HOURS = 1..H

GENS = 1..G

! Basic Economic Dispatch

PMIN: array(GENS) of real

PMAX: array(GENS) of real

MARGINAL_PRICE: array(GENS) of real
27

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

DEMAND: array(HOURS) of real

unit_power: array(GENS,HOURS) of mpvar

! On and Off Status and Min Up and Min Down Times

M = 1000

MIN_UP: array(GENS) of integer

MIN_DOWN: array(GENS) of integer

STATUS_INIT: array(GENS) of integer

unit_on: array(GENS,HOURS) of mpvar

actual_power: array(GENS, HOURS) of mpvar

end-declarations

initializations from DATAFILE

PMIN PMAX MARGINAL_PRICE DEMAND

MIN_UP MIN_DOWN STATUS_INIT

end-initializations

(!---INIT STATUS CALCULATIONS---!)

forall(g in GENS) do

if(STATUS_INIT(g)>0) then

STATUS_INIT_UP(g):= STATUS_INIT(g)

STATUS_INIT_DOWN(g):=0

UNITS_INIT(g):=1

else

STATUS_INIT_UP(g):= 0

STATUS_INIT_DOWN(g):=STATUS_INIT(g)*(-1)

UNITS_INIT(g):=0

end-if

end-do

(!---TYPE CONSTRAINTS---!)

forall(g in GENS, h in HOURS)do

unit_on(g,h) is_binary

end-do

(!---CONSTRAINTS---!)

! power min and max

forall(g in GENS, h in HOURS) do

unit_power(g,h) >= PMIN(g)

unit_power(g,h) <= PMAX(g)

end-do

! Load Generation Balance - Slide 47

forall(h in HOURS) do

sum(g in GENS) actual_power(g,h) = DEMAND(h) ! Load

end-do

! Linearizing the product of a binary and a continuous variable

forall(g in GENS, h in HOURS) do

actual_power(g,h) <= M*unit_on(g,h)

actual_power(g,h) >= 0

actual_power(g,h) <= unit_power(g,h)

actual_power(g,h) >= unit_power(g,h)-(1-unit_on(g,h))*M

end-do

! unit_on must be 1 when power > 0

forall(g in GENS, h in HOURS) do

unit_on(g,h)*M >= actual_power(g,h)

end-do

28

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

! Units On/Off Status

forall(g in GENS) do ! MINIMUM UPTIME - BOUNDARY

lim:=minlist(MIN_UP(g),H)

forall(i in 1..lim) unit_on(g,1)-UNITS_INIT(g)<=unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_UP(g)-STATUS_INIT_UP(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)<=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM UPTIME - MAIN

lim:=minlist(h+MIN_UP(g)-1,H)

forall(i in h..lim) unit_on(g,h)-unit_on(g,h-1)<=unit_on(g,i) ! rest of hours constraints

end-do

forall(g in GENS) do ! MINIMUM DOWNTIME - BOUNDARY

lim:=minlist(MIN_DOWN(g),H)

forall(i in 1..lim) UNITS_INIT(g)-unit_on(g,1)<=1-unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_DOWN(g)-STATUS_INIT_DOWN(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)>=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM DOWNTIME - MAIN !

lim:=minlist(h+MIN_DOWN(g)-1,H)

forall(i in h..lim) unit_on(g,h-1)-unit_on(g,h)<=1-unit_on(g,i)

end-do

(!---OBJECTIVES---!)

forall(h in HOURS) do

HOURLY_POWERCOST(h):=sum(g in GENS)(MARGINAL_PRICE(g)*actual_power(g,h))

end-do

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

(!---SOLUTION PRINTING---!)

writeln("Cost Total: $", getobjval)

forall(h in HOURS) do

write("H",h,":Cost:$",getsol(HOURLY_POWERCOST(h)))

writeln("")

forall(g in GENS) do

write("P",g,":",getsol(actual_power(g,h)),"MW; ")

end-do

writeln("")

end-do

forall(h in HOURS) do

writeln("")

forall(g in GENS) do

write(getsol(unit_on(g,h)))

end-do

end-do

end-model

29

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

C Appendix: Dispatch with No Load Cost, Startup Costs,

and Reserve

C.1 Formulation: No Load Cost

I actually tried to introduce No Load Cost originally in my Basic Economic Dispatch but without Unit On and
Off Status, there was no simple way to easily add it in at the correct moments. With Unit On and Off Status
implemented, No Load Cost is very easy. The NO LOAD COST array is a set of constants and I only need to add
it to the HOURLY POWERCOST calculation from Section A.3 while multiplying it by unit on.

C.2 Formulation: Startup Costs

There are two stages to Startup Costs in my code. The first stage is cold–start only. Since I now have a reliable
unit on value which tells me if the unit is on, I can easily calculate when units start up. A generator starts up when
unit on(h)-unit on(h-1)=1.

forall(g in GENS) do unit_started(g,1) >= unit_on(g,1) - UNITS_INIT(g)

forall(g in GENS, h in HOURS|h>1) do unit_started(g,h) >= unit_on(g,h) - unit_on(g,h-1)

C.3 Formulation: Reserve

During class, all problems to do with Power Reserve used constant values. My initial implementa-
tion of power reserve in my program also used a simple array of values. After many hours attempting
to do the reserve in a more sophisticated manner where I would seek to have enough reserve to
cover the largest single generation value of a single generator with all other generators, I decided
to take a simpler path that others have taken and go with a reserve of 20% of demand.

Since demand is constant, this makes the calculation straight forward. For each hour, the sum
of the PMAX values for all generators that are on must exceed the DEMAND+0.2*DEMAND.
Written out as constraints:

forall(h in HOURS)

(sum(g in GENS) unit_on(g,h)*PMAX(g)) >= DEMAND(h)+RESERVE_PERCENT*DEMAND(h)

C.4 Formulation: Minimize Function

In this case, the minimize function needed only minor adjustments to include the No Load Cost
and the Startup Cost since the Reserve was calculated into the power requirements.

First I calculated the hourly startup cost:

forall(h in HOURS)

HOURLY_STARTUP_COST(h):=sum(g in GENS)(STARTUP_COST(g)*unit_started(g,h))

And then I added that into the minimization cost:

forall(h in HOURS) do

HOURLY_POWERCOST(h):=sum(g in GENS)

(NO_LOAD_COST(g)*unit_on(g,h)+MARGINAL_PRICE(g)*actual_power(g,h))+

HOURLY_STARTUP_COST(h)

30

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

C.5 Input File

H:[3]

G:[4]

PMIN:[120,50,30,10]

PMAX:[200,100,50,20]

MARGINAL_PRICE:[20,30,40,50]

DEMAND:[150,120,160]

MIN_UP:[3,2,1]

MIN_DOWN:[3,2,1]

STATUS_INIT:[-5,3,3]

NO_LOAD_COST: [0,0,0]

STARTUP_COST: [1000,600,150]

RESERVE_PERCENT: [0.2]

C.6 Code

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress-Optimizer

!DATAFILE:="../data/03.txt"

!DATAFILE:="../data/03_hwk4_2.txt"

DATAFILE:="../data/03_sample_data.txt"

(!---CONSTANT---!)

declarations

H: integer

G: integer

end-declarations

initializations from DATAFILE

H G

end-initializations

declarations

HOURS = 1..H

GENS = 1..G

! Basic Economic Dispatch

PMIN: array(GENS) of real

PMAX: array(GENS) of real

MARGINAL_PRICE: array(GENS) of real

DEMAND: array(HOURS) of real

unit_power: array(GENS,HOURS) of mpvar

! On and Off Status and Min Up and Min Down Times

M = 1000

MIN_UP: array(GENS) of integer

MIN_DOWN: array(GENS) of integer

STATUS_INIT: array(GENS) of integer

unit_on: array(GENS,HOURS) of mpvar

actual_power: array(GENS,HOURS) of mpvar

! No Load Cost, Startup Cost, Reserve

NO_LOAD_COST: array(GENS) of real

STARTUP_COST: array(GENS) of real

RESERVE_PERCENT: real

unit_started: array(GENS,HOURS) of mpvar

end-declarations
31

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

initializations from DATAFILE

PMIN PMAX MARGINAL_PRICE DEMAND

MIN_UP MIN_DOWN STATUS_INIT

NO_LOAD_COST STARTUP_COST RESERVE_PERCENT

end-initializations

(!---INIT STATUS CALCULATIONS---!)

forall(g in GENS) do

if(STATUS_INIT(g)>0) then

STATUS_INIT_UP(g):= STATUS_INIT(g)

STATUS_INIT_DOWN(g):=0

UNITS_INIT(g):=1

else

STATUS_INIT_UP(g):= 0

STATUS_INIT_DOWN(g):=STATUS_INIT(g)*(-1)

UNITS_INIT(g):=0

end-if

end-do

(!---TYPE CONSTRAINTS---!)

forall(g in GENS, h in HOURS)do

unit_on(g,h) is_binary

unit_started(g,h) is_binary

end-do

(!---CONSTRAINTS---!)

! power min and max

forall(g in GENS, h in HOURS) do

unit_power(g,h) >= PMIN(g)

unit_power(g,h) <= PMAX(g)

end-do

! Load Generation Balance - Slide 47

forall(h in HOURS) do

sum(g in GENS) actual_power(g,h) = DEMAND(h) ! Load

end-do

! Linearizing the product of a binary and a continuous variable

forall(g in GENS, h in HOURS) do

actual_power(g,h) <= M*unit_on(g,h)

actual_power(g,h) >= 0

actual_power(g,h) <= unit_power(g,h)

actual_power(g,h) >= unit_power(g,h)-(1-unit_on(g,h))*M

end-do

! unit_on must be 1 when power > 0

forall(g in GENS, h in HOURS) do

unit_on(g,h)*M >= actual_power(g,h)

end-do

! Units On/Off Status

forall(g in GENS) do ! MINIMUM UPTIME - BOUNDARY

lim:=minlist(MIN_UP(g),H)

forall(i in 1..lim) unit_on(g,1)-UNITS_INIT(g)<=unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_UP(g)-STATUS_INIT_UP(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)<=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM UPTIME - MAIN

lim:=minlist(h+MIN_UP(g)-1,H)

32

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

forall(i in h..lim) unit_on(g,h)-unit_on(g,h-1)<=unit_on(g,i) ! rest of hours constraints

end-do

forall(g in GENS) do ! MINIMUM DOWNTIME - BOUNDARY

lim:=minlist(MIN_DOWN(g),H)

forall(i in 1..lim) UNITS_INIT(g)-unit_on(g,1)<=1-unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_DOWN(g)-STATUS_INIT_DOWN(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)>=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM DOWNTIME - MAIN !

lim:=minlist(h+MIN_DOWN(g)-1,H)

forall(i in h..lim) unit_on(g,h-1)-unit_on(g,h)<=1-unit_on(g,i)

end-do

! Startup Status !

forall(g in GENS) unit_started(g,1)>=unit_on(g,1)-UNITS_INIT(g)

forall(g in GENS, h in HOURS|h>1) unit_started(g,h) >= unit_on(g,h)-unit_on(g,h-1)

! Startup Cost Total

forall(h in HOURS)

HOURLY_STARTUP_COST(h):=sum(g in GENS)(STARTUP_COST(g)*unit_started(g,h))

! Reserve: Percentage of Demand

forall(h in HOURS)

(sum(g in GENS) unit_on(g,h)*PMAX(g)) >= DEMAND(h)+RESERVE_PERCENT*DEMAND(h)

(!---OBJECTIVES---!)

forall(h in HOURS) do

HOURLY_POWERCOST(h):=sum(g in GENS)

(NO_LOAD_COST(g)*unit_on(g,h)+MARGINAL_PRICE(g)*actual_power(g,h))+

HOURLY_STARTUP_COST(h)

end-do

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

(!---SOLUTION PRINTING---!)

writeln("Cost Total: $", getobjval)

forall(h in HOURS) do

write("H",h,":Cost:$",getsol(HOURLY_POWERCOST(h)))

writeln("")

forall(g in GENS) do

write("P",g,":",getsol(actual_power(g,h)),"MW; ")

end-do

writeln("")

end-do

writeln("")

writeln("unit_on")

forall(g in GENS) write(getsol(UNITS_INIT(g)))

write("(UNITS_INIT)")

writeln("")

writeln("---")

forall(h in HOURS) do

forall(g in GENS) do

write(getsol(unit_on(g,h)))

end-do

writeln("")

end-do

writeln("")

writeln("unit_started")

forall(h in HOURS) do

33

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

forall(g in GENS) do

write(getsol(unit_started(g,h)))

end-do

writeln("")

end-do

end-model

34

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

D Appendix: Dispatch with Three–Segment Cost Curves

D.1 Formulation: Three–Segment Cost Curves

Three–segment cost curves are done by splitting the power generated by a single generator into three
sections each with their own marginal cost. The cost is then calculated across all three “generators”.

Explaining this with an example, if I have a single generator that can generate between 200MW
and 500MW which has a no–load cost of $400 and I want to use a three–segment cost curve, it
would be divided as shown in Table 12.

Generator Power Cost
0 200 MW $400
1 0 to 100 MW $15/MWh
2 0 to 100 MW $20/MWh
3 0 to 100 MW $25/MWh

Table 12: An example of how a 200MW to 500MW generator would have
its generation and cost divided into three segments.

The unit power value which would have normally been between 200MW and 500MW is instead
calculated as the the sum of 200MW + the value of each of three 100MW “generators”:

The following code shows the calculation of the maximum power values and setting the range of
each generator at those limits.

forall(g in GENS) PMAX_THREE_SEG(g):=(PMAX(g) - PMIN(g))/P

forall(p in PRICES, g in GENS, h in HOURS) do

split_power(p,g,h) >= 0

split_power(p,g,h) <= PMAX_THREE_SEG(g)

end-do

The final step is to write unit power as the sum across the three small generators. Since actual power is calculated
using unit power and it works with the unit on binary, there is no need to worry about having unit power never be
zero.

forall(g in GENS, h in HOURS)

unit_power(g,h) = PMIN(g) + sum(p in PRICES)(split_power(p,g,h))

Since this code effects the calculation of unit power, it was added near the top of the constraints in
the program.

D.2 Formulation: Minimize Function

Since the cost is separate, the minimization functions need minor adjustments to calculate price on
a per–segment basis.

forall(g in GENS, h in HOURS)

HOURLY_GEN_COST(g,h):=NO_LOAD_COST(g)*unit_on(g,h)+

PMIN(g)*PRICE(1,g)*unit_on(g,h)+

(sum(p in PRICES)PRICE(p,g)*split_power(p,g,h))

forall(h in HOURS)

HOURLY_POWERCOST(h):=sum(g in GENS)(HOURLY_GEN_COST(g,h))+HOURLY_STARTUP_COST(h)

35

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

D.3 Input File

H:[6]

G:[4]

P:[3]

PMIN:[25,50,60,0]

PMAX:[100,150,200,250]

MARGINAL_PRICE:[15.45,17.3467,26.9,36.9]

DEMAND:[250,200,390,250,130,300]

MIN_UP:[1,1,3,2]

MIN_DOWN:[1,2,2,1]

STATUS_INIT:[2,-3,-5,-7]

NO_LOAD_COST:[0,0,0,0]

STARTUP_COST:[500,700,800,900]

RESERVE_PERCENT:[0.2]

PRICE:[15,17,26,36,

20,25,30,40,

30,35,40,50]

D.4 Code

model "Portfolio optimization with LP"

uses "mmxprs" ! Use Xpress-Optimizer

!DATAFILE:="../data/04.txt"

!DATAFILE:="../data/04_hwk4_2.txt"

!DATAFILE:="../data/04_hwk8_3.txt"

DATAFILE:="../data/04_sample_data.txt"

(!---CONSTANT---!)

declarations

H: integer

G: integer

P: integer

end-declarations

initializations from DATAFILE

H G P

end-initializations

declarations

HOURS = 1..H

GENS = 1..G

! Basic Economic Dispatch

PMIN: array(GENS) of real

PMAX: array(GENS) of real

MARGINAL_PRICE: array(GENS) of real

DEMAND: array(HOURS) of real

unit_power: array(GENS,HOURS) of mpvar

! On and Off Status and Min Up and Min Down Times

M = 1000

MIN_UP: array(GENS) of integer

MIN_DOWN: array(GENS) of integer

STATUS_INIT: array(GENS) of integer

unit_on: array(GENS,HOURS) of mpvar

actual_power: array(GENS,HOURS) of mpvar

36

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

! No Load Cost, Startup Cost, Reserve

NO_LOAD_COST: array(GENS) of real

STARTUP_COST: array(GENS) of real

RESERVE_PERCENT: real

unit_started: array(GENS,HOURS) of mpvar

! Three Segment Cost Curves

PRICES = 1..P

PRICE: array(PRICES,GENS) of real

split_power: array(PRICES,GENS,HOURS) of mpvar

end-declarations

initializations from DATAFILE

PMIN PMAX MARGINAL_PRICE DEMAND

MIN_UP MIN_DOWN STATUS_INIT

NO_LOAD_COST STARTUP_COST RESERVE_PERCENT

PRICE

end-initializations

(!---INIT STATUS CALCULATIONS---!)

forall(g in GENS) do

if(STATUS_INIT(g)>0) then

STATUS_INIT_UP(g):= STATUS_INIT(g)

STATUS_INIT_DOWN(g):=0

UNITS_INIT(g):=1

else

STATUS_INIT_UP(g):= 0

STATUS_INIT_DOWN(g):=STATUS_INIT(g)*(-1)

UNITS_INIT(g):=0

end-if

end-do

forall(g in GENS) MARGINAL_PRICE(g) := PRICE(1,g)

(!---TYPE CONSTRAINTS---!)

forall(g in GENS, h in HOURS)do

unit_on(g,h) is_binary

unit_started(g,h) is_binary

end-do

(!---CONSTRAINTS---!)

! power min and max

forall(g in GENS, h in HOURS) do

unit_power(g,h) >= PMIN(g)

unit_power(g,h) <= PMAX(g)

end-do

! Load Generation Balance - Slide 47

forall(h in HOURS) do

sum(g in GENS) actual_power(g,h) = DEMAND(h) ! Load

end-do

! Linearizing the product of a binary and a continuous variable

forall(g in GENS, h in HOURS) do

actual_power(g,h) <= M*unit_on(g,h)

actual_power(g,h) >= 0

actual_power(g,h) <= unit_power(g,h)

actual_power(g,h) >= unit_power(g,h)-(1-unit_on(g,h))*M

37

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

end-do

! unit_on must be 1 when power > 0

forall(g in GENS, h in HOURS) do

unit_on(g,h)*M >= actual_power(g,h)

end-do

! Units On/Off Status

forall(g in GENS) do ! MINIMUM UPTIME - BOUNDARY

lim:=minlist(MIN_UP(g),H)

forall(i in 1..lim) unit_on(g,1)-UNITS_INIT(g)<=unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_UP(g)-STATUS_INIT_UP(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)<=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM UPTIME - MAIN

lim:=minlist(h+MIN_UP(g)-1,H)

forall(i in h..lim) unit_on(g,h)-unit_on(g,h-1)<=unit_on(g,i) ! rest of hours constraints

end-do

forall(g in GENS) do ! MINIMUM DOWNTIME - BOUNDARY

lim:=minlist(MIN_DOWN(g),H)

forall(i in 1..lim) UNITS_INIT(g)-unit_on(g,1)<=1-unit_on(g,i) ! first hour constraints

init_lim:=minlist(MIN_DOWN(g)-STATUS_INIT_DOWN(g),H)

forall(i in 1..init_lim) UNITS_INIT(g)>=unit_on(g,i) ! initial status constraints

end-do

forall(g in GENS, h in HOURS|h>1) do ! MINIMUM DOWNTIME - MAIN !

lim:=minlist(h+MIN_DOWN(g)-1,H)

forall(i in h..lim) unit_on(g,h-1)-unit_on(g,h)<=1-unit_on(g,i)

end-do

! Startup Status !

forall(g in GENS) unit_started(g,1)>=unit_on(g,1)-UNITS_INIT(g)

forall(g in GENS, h in HOURS|h>1) unit_started(g,h) >= unit_on(g,h)-unit_on(g,h-1)

! Startup Cost Total

forall(h in HOURS)

HOURLY_STARTUP_COST(h):=sum(g in GENS)(STARTUP_COST(g)*unit_started(g,h))

! Reserve: Percentage of Demand

forall(h in HOURS)

(sum(g in GENS) unit_on(g,h)*PMAX(g)) >= DEMAND(h)+RESERVE_PERCENT*DEMAND(h)

! three-segment cost curves

forall(g in GENS) PMAX_THREE_SEG(g):=(PMAX(g)-PMIN(g))/P

forall(p in PRICES, g in GENS, h in HOURS) do

split_power(p,g,h) >= 0

split_power(p,g,h) <= PMAX_THREE_SEG(g)

end-do

forall(g in GENS, h in HOURS)

unit_power(g,h) = PMIN(g)+sum(p in PRICES)(split_power(p,g,h))

(!---OBJECTIVES---!)

! Three Segment Price

forall(g in GENS, h in HOURS)

HOURLY_GEN_COST(g,h):=NO_LOAD_COST(g)*unit_on(g,h)+

MARGINAL_PRICE(g)*PMIN(g)*unit_on(g,h)+

sum(p in PRICES)(PRICE(p,g)*split_power(p,g,h))

forall(h in HOURS) do

HOURLY_POWERCOST(h):=sum(g in GENS)(HOURLY_GEN_COST(g,h))+HOURLY_STARTUP_COST(h)

end-do

minimize(sum(h in HOURS) HOURLY_POWERCOST(h))

38

Darrell Ross
Final Project Report

University of Washington
EE 553 , Spring 2015

(!---SOLUTION PRINTING---!)

writeln("Cost Total: $", getobjval)

forall(h in HOURS) do

write("H",h,":Cost:$",getsol(HOURLY_POWERCOST(h)))

writeln("")

forall(g in GENS) do

write("P",g,":",getsol(actual_power(g,h)),"MW; ")

end-do

writeln("")

end-do

writeln("")

writeln("unit_on")

forall(g in GENS) write(getsol(UNITS_INIT(g)))

write("(UNITS_INIT)")

writeln("")

writeln("---")

forall(h in HOURS) do

forall(g in GENS) do

write(getsol(unit_on(g,h)))

end-do

writeln("")

end-do

end-model

39

	Introduction
	Problem Statement
	Coding Style
	Basic Economic Dispatch
	Testing Data: Practice Problem Set 3
	Test: Match Practice Problem Set 3
	Test: Match Increasing Loads
	Test: Out of Bounds
	Dispatch with On and Off Status and Minimum Times
	Test: Match Practice Problem Set 3
	Test: On and Off Status in Practice Problem Set 3
	Test: On and Off Status of Homework 4, Problem 2
	Test: Minimum Up Time
	Test: Minimum Down Time
	Test: Minimum Up Time and Minimum Down Time
	Dispatch with No Load Cost, Startup Costs, and Reserve
	Test: Match Practice Problem Set 3
	Test: Match Homework 4, Problem 2
	Test: No Load Cost
	Test 3: Startup Cost
	Test 4: Reserve Percent
	Dispatch with Three–Segment Cost Curves
	Test: Match Practice Problem Set 3
	Test: Verify Three–Segment

	Comprehensive Test
	Test: Match All Iterations of the Program

	A Note About Hot Start
	Conclusions
	Testing
	Working With Others

	Appendix: Basic Economic Dispatch
	Formulation: Power Minimums and Maximums
	Formulation: Load Generation Balance
	Formulation: Minimize Function
	Input File
	Code
	Appendix: Dispatch with On and Off Status and Minimum Times
	Formulation: On and Off Status
	Formulation: Minimum Times
	Formulation: Minimize Function
	Input File
	Code
	Appendix: Dispatch with No Load Cost, Startup Costs, and Reserve
	Formulation: No Load Cost
	Formulation: Startup Costs
	Formulation: Reserve
	Formulation: Minimize Function
	Input File
	Code
	Appendix: Dispatch with Three–Segment Cost Curves
	Formulation: Three–Segment Cost Curves
	Formulation: Minimize Function
	Input File
	Code

