Project: Radar Resampling

University of Washington
EE 590 Winter 2017

Eric Wilson and Darrell Ross

February 27, 2017

Eric Wilson and Darrell Ross
Project: Radar Resampling

University of Washington
EE 590, Winter 2017

Contents
1 Introduction
1.1 Process Overview o
1.2 Report Organization
2 Concepts
2.1 Sample Interval oo
2.2 Least Squares Approximation
2.2.1 QR Decomposition L.
2.2.2 Givens Rotation L.
2.2.3 Back Substitution
2.3 Resampling
3 Algorithms
3.1 Imterval Sample
3.2 Least Squares Approximation
3.2.1 Givens Rotations and QR Decomposition
3.2.2 Back Substitutiono
3.3 Resampling
4 Performance
4.1 Interval Sample
4.2 Givens Rotations and QR Decomposition
4.3 Back Substitutiono oo
4.4 Resampling
5 Analysis
5.1 Resamplingo o
5.2 QR Decomposition
6 Conclusions

Appendix A Algorithm Examples

A.1 Least Squares Approximation
A.2 Givens Rotation and QR Decomposition
A.3 Back Substitution

Appendix B Kernels

B.1 Resampling()

Appendix C Program Instructions

Appendix D Attachments

1

[S2 B BTN N W W N NN NN —_ =

N 9 o o O

Qo

10

..................... 10
..................... 10
..................... 10

10

..................... 10

11

12

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

1 Introduction

Professor John D. Sahr in the Electrical Engineering department at the University of Washington
(UW) runs a passive receiver that samples at 4 giga-samples per second (GSPS). He is interested in
down-sampling to 3.5 GSPS in real-time by leveraging CUDA on Nvidia Keplar K10 graphics cards.

This report serves two purposes. First, it meets project report requirements for EE590: Applied High-
Performance GPU Computing. Second, it serves as a report for Professor Sahr on how we solved the
down-sampling problem using parallelism.

1.1 Process Overview

An overview of our resampling process is shown in Figure 1. Walking through the figure, the signal
from the receiver is sampled for ¢ seconds. After we acquire the sample data, we perform a Least
Squares Approximation (LSA) to get the curve of best fit with a sixth—order polynomial. Finally, the
data is sampled at the lower rate of 3.5 GPSP.

data in —| Interval, At LS Approximation Resample ———— data out

B-Splines

Figure 1: An overview of parts of the resampler.

1.2 Report Organization
e Concepts provides a conceptual review of each piece of the process.
e Algorithms covers the sequential and OpenCL algorithms used.

e Analysis evaluates performance of each piece of the process.

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

2 Concepts

Each of the entries from Figure 1 are covered in this section.

2.1 Sample Interval

As it turns out, the sample interval is not a simple choice. The interval chosen determines how long
a single chunk of data will take to solve. Depending on the size, we may be able to pipeline several
solutions at the same time. But pipelining will suffer from diminishing returns due to overhead. So
we really need to calculate how much work it will take to run a single process all the way through. A
simulation will probably be our best bet to determine optimal sample interval size.

2.2 Least Squares Approximation

The Least Squares Approximation (LSA) is a way of finding the curve of best fit to the sample data.
We were given that the polynomial degree would be k£ < 6. Performing a Least Squares Approximation
(LSA) can be done in many ways. We chose QR Decomposition followed by Back Substitution. Another
option considered was Single Value Decomposition (SVD) which is covered in Appendix ?7.

2.2.1 QR Decomposition

QR decomposition involves taking a matrix A and decomposing it into an upper triangular matrix R
and an orthogonal matrix @) such that A = QR. If A is mxn where m > n, then the bottom (m — n)
rows of an upper triangular matrix will consist of all zeros. In this situation, R is partitioned. Since
Ry = 0, the final result is Q1 R;.

There are multiple techniques available for reaching the upper triangular matrix. We decided to go
with the Givens Rotation. Other considered options are covered in Appendix A.2.

2.2.2 Givens Rotation

A sequence of Givens Rotations are used to construct the upper-right triangular matrix R and the
combination of the Givens Rotations results in the matrix). Each multiplication of the matrix A by
the Givens Rotation matrix G results in a zero being inserted into A, as shown in (1).

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

The Givens rotation matrix G is constructed from ¢ and s where

2.2.3 Back Substitution

Back Substitution is a quick method of solving for x in (2) without having to invert R. This is quick
when R is an upper triangular matrix as it is in our case. An example is provided in Appendix A.3.
For our usage, the QR Decomposition with the Givens Rotation will provide us the R and () matrices
so we can quickly solve for x.

R-z=0Q" b (2)

2.3 Resampling

Resampling is the process of taking a set of data acquired at one sample rate and converting it to
another sample rate. In the case of passive RADAR resampling, the input data rate to the resampler
is 4 GSPS and the output rate is 3.5 GSPS. This is a 7/8 resample rate. To achieve a lower sample rate
the discrete time input signal is reconstructed as an analog (continuous-time) signal using a polynomial
curve fit. Least squares approximation calculates the coefficients for the polynomial curve fit. The
polynomial representing the continuous time signal can now be evaluated at the new sample rate to
reconstruct the original discrete time signal at a new sample rate.

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

3 Algorithms

3.1 Interval Sample

The interval sample will determine the number of data points. The number of data points determines
the height of the A matrix which will have a maximum width of k£ 4+ 1 where k is the order of the
polynomial — ours is maximum 6* order. There are several constraints to consider:

e A sixth-order polynomial will fail to accurately match the data if too many data points are used.
It is important to know the approximate frequencies of the data so we can avoid this issue.

e The GPU has a limit on how much it can process in parallel which will also constrain the sample
size.

Thus, choosing the interval requires knowing the rest of our algorithm and the limits of the GPU being
used. The timing of the full algorithm #.,ution can be split into the three segments depicted in Figure
2. In order to maintain real-time output, our pipeline count p must be such that:

tsolution = At- p

Aty LSA, Sample;
Aty LSA, Samplesy
Aty LSA; Samples
Aty LSA, Sampley

Figure 2: Pipelines with the interval and algorithm.

Once we have a full set of data describing expected execution time and we know what the frequencies
are and we know the GPU we are running on, we will finally be able to choose the optimal interval.
Until then, we will use sample data.

3.2 Least Squares Approximation

Although the LSA constitutes two algorithms combined together, analysis of them makes more sense
when done in one block.

3.2.1 Givens Rotations and QR Decomposition

Givens rotations have a limited scope when it comes to speedup via parallelism. This is due to some
interdependency between the order in which the Givens rotations are applied. Because the Givens
rotations are only applied to two rows during an iteration, the Givens rotations can be parallelized on
different colunms after a certain number of iterations. If each element in the R matrix is zeroed after
iteration n, then the following matrix shows the iteration when each element can be zeroed.

4

Eric Wilson and Darrell Ross University of Washington

Project: Radar Resampling EFE 590, Winter 2017
. -
6
5 7T x
46 8 (3)
35 79 =z
2 46 8 10 =z
1357 9 11 z

A Givens rotation kernel can be started on the first colunm at the start of algorithm execution and
works its way up the first colunm. When the Givens rotation kernel on column 1 gets row 5 on
iteration 3, the next Givens rotation kernel can be started and works up colunm 2. This process can
be continued until the last colunm, which in our case is 7 since the largest number of polynomial
coefficients we will be using is £ = 6 and matrix R has k + 1 colunms. This means that we can
have a maximum of 7 Givens kernels running in parallel at the same time. The following pseudocode
implements a method to start each Givens rotation kernel on a colunm after a certain iteration.

function [matrix R, matrix Q] = GivensKernel(matrix A, numRows)
R = A;
for (iter = 0..12)
[R, Q1] = GivensKernel(R[colunm 1])
if (iter > 2)
[R, Q2] = GivensKernel(R[colunm 2])
if (iter > 4)
[R, Q3] = GivensKernel(R[colunm 3])
if (iter > 6)
[R, Q4] = GivensKernel(R[colunm 4])
if (iter > 8)
[R, Q5] = GivensKernel(R[colunm 5])
if (iter > 10)
[R, Q6] = GivensKernel(R[colunm 6])
if (iter > 11)
[R, Q7] = GivensKernel(R[colunm 7])
endfor
Q = Q1xQ2xQ3*Q4*Q5*Q6*Q7;
endfunction

3.2.2 Back Substitution

Back Substitution is really a linear operation. For our problem the final matrix we solve will be small
enough (7x7) to make parallelization unnecessary. We do not currently intend to use a kernel for this
part of the solution.

3.3 Resampling

Resampling is simply passing our new time interval values into the continuous LSA solution. Since
we are guaranteed an order < 6, we can do this in OpenCL using a cl_float§ for the coefficients. This

produces the Resample() kernel shown in Appendix B.1.
5

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

4 Performance

This sections covers performance estimates.

4.1 Interval Sample

[Section needs populated once we have run some full simulations and drawn conclusions about what
the right sample interval is.]

4.2 Givens Rotations and QR Decomposition

A single Givens Rotation requires work in the following manner. First the calculation of the Givens
values:

c:2 W=1

r

b
s= - W=1

r
r=+va?+b? W a4

" Wes =06

Next, the Givens matrix is multiplied by the A matrix which has size MxK. The Givens matrix will
only change two rows of the A matrix. This reduces the work to:

Wgy=3-2-K=6K 2 products, 1 sum, 2 rows, K columns
S Weap =Wes + Wy =64+ 6K

In addition, we must maintain the KxK) matrix by multiplying it by the new KxK G matrix each
time. This follows the same pattern as the product with the A matrix in terms of only affecting two
rOws:

Woa=3-2-M =6M 2 products, 1 sum, 2 rows, M samples
So a single Givens Rotation calculation runs us:
Wr=6+6K+6M

The number of Givens Rotations necessary will be equivalent to the original MxK matrix minus the
upper triangular portion of 2(k + 1) entries.

Wiotal = (MK — 2(K +1))(6 + 6K + 6M)

Calculating the memory operations is a bit more straight forward assuming we write a kernel that can
do all givens rotations without having to return each time:

Q,=DMK MxK matrix with D bytes per value
Quw=DMM MxM matrix with D bytes per value
D=4 4 bytes per float

L Q=Q,+Q, =4M?*+4MK

Eric Wilson and Darrell Ross
Project: Radar Resampling

University of Washington
EFE 590, Winter 2017

W (MK —2(K +1))(6+ 6K + 6M)

DAl = — =

0 AM? + AMK

This is all easier to see with an example. For our example, we will use an input matrix of size 5x3.
This would map to our problem as 5 samples of a second order polynomial. Running the numbers:

Wiotal = 9(6 + 18 + 30) = 486

Q = 160
486

Al =2 =303
160

4.3 Back Substitution

Assuming all coefficients are non-zero and not one:

Wr; =1
We =3
Ws=5
Wy=17
Wy, =13
W Wr =49

4.4 Resampling

1 product
2 products, 1 sum
3 products, 2 sums

4 products, 3 sums

7 products, 6 sums

Reviewing the Resample() kernel, we can calculate the Arithmetic Intensity A/. In this instance, we
assume that the work done by the power function W, is equivalent to P —1 where P is the exponent
value. Applying this to an evaluation for a single time x; produces the output y;:

Y = aox? + &1333 + anf + agxf + 01496;l + a5x§’ + a6w?
W =1IN4+2N+3N +4N +5N +6N +5=26N

Q, = DN +8D
Q. = DN
Q=0 +Q,=2DN +8D
D=4
Q=8N+ 32
w 26N 26
A= =sn+2"%
o AT =3.25

21 products and 5 sums for each input N

read N entries and one float8

write N entries

4 bytes per float

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

5 Analysis

5.1 Resampling

Performance was evaluated using an Intel HD 5500 GPU which has a single-precision floating point
maximum of 38.4 GFLOPS and a bandwidth of 12.8 Gbps. With these specs, an Al of at least
38.4/12.8=3 FLOPS/byte is desired. Since this kernel achieves 3.25 FLOPS/byte, it should be an

effective application of parallelism.

When analyzed using OpenCL Kernel Development feature in Intel CodeBuilder in Visual Studio
2015, the GPU was faster as shown in Table 1. Presumably this difference will be more stark on

Processor Sample Size Time(ms)
Intel® Core™ i3-5010U CPU @ 2.1GHz 1024 0.078
Intel® HD Graphics 5500 1024 0.041

Table 1: Simulation results for the Resample kernel.

higher powered GPUs with larger sample sizes. For reference, a sample size of 1024 would be a At of
only 0.256 us.
5.2 QR Decomposition

The sequential QR decomposition algorithm was executed on an Intel 17-6500U CPU. The input data
size was a 32x32 matrix. Execution time was averaged over 10,000 iterations.

Processor Sample Size Time(ms)
Intel® Core™ i7-6500U CPU @ 2.5GHz 1024 0.388

Table 2: Simulation results for the QR kernel.

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

6 Conclusions

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

Appendix A Algorithm Examples

This section provides working examples for each algorithm used to help demonstrate how they work.

A.1 Least Squares Approximation
A.2 Givens Rotation and QR Decomposition

A.3 Back Substitution

Recall that as we complete our QR Decomposition, we have our) matrix and our R matrix and we
know b so only to solve for x in the following:

R-xz=Q" b
Solving by example:

1 -2 1] 4
0 1 6|-1

0 01
r—2y+z=4
y+6z=-—1
z =2

Back substitution means that we plug in the last entry, z = 2 to the second equation to solve for y
and then plug the z and the results for y into the first equation to solve for x.

= z=2
Sy+12=—-1 =y=11
Srx—2242=4 =x =28

Appendix B Kernels

B.1 Resampling()

__kernel void Resample(float8 coeffs, __global float* t, __global float* result)

{
const unsigned int id = get_global_id(0);
float val = t[id];
float out = 0;
for(unsigned int i=0; i<6; ++i)
out += coeffs[i]*pow(val,i);
result[id] = out;
}

10

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

Appendix C Program Instructions

When we complete our program, this section will contain instructions on how to use it.

11

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

Appendix D Attachments

e control.cpp - C++ code used to execute sequential and kernel functions.

12

O Jo Ul W

WwwwhhdDdDdNDDNDDNDNDNDNNNNRPREPRERERERERERERERERE R
WNRPOWOWJIOU D WNE O WOOW-JOoU P wNE O

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

std: :map<int,

#include "CL/cl.h"
#include "ocl.h"
#include "tools.h"
#include "utils.h"
#include "data.h"
#include "control.h"
#include "profiler.h"
#include "enums.h"
#include <iostream>
#include <vector>
#include <algorithm>
namespace

{

const char* FILENAME = "resample.cl";

}

ControlClass::ControlClass()

GroupManager ("Control™)

{
groups_ = GroupFactory() ;

}

ProblemGroup*> ControlClass: :GroupFactory()
{

std: :map<int, ProblemGroup*> pgs;
ProblemGroup* InputControl =
pgs[InputControl->GroupNum()] = InputControl;
ProblemGroup* projectFuncs = new ProblemGroup(l,
projectFuncs->problems [projectFuncs->problems .size() + 1]
sixth-order polynomial");
projectFuncs->problems [projectFuncs->problems .size() + 1]
sixth-order polynomial™);
pgs[projectFuncs->GroupNum ()]
return pgs;

= projectFuncs;

{
cl int err;
ocl args ocl(CL DEVICE TYPE GPU);

// Create Local Variables and Allocate Memory

// The buffer should be aligned with 4K page and size should fit 64-byte

cl uint sampleSize = 1024;
cl uint optimizedSizeFloat =

"Control");

GroupManagerInputControlFactory() ;

new Problem(&exCL Resample, "OpenCL: Apply

new Problem(&exSeq Resample, "Sequental: Apply

/////7/7/////7/7/7///// RESAMPLE USING POLYNOMIAL APPROXIMATION /////////////////
int exCL Resample (ResultsStruct* results)

cached line

((sizeof (cl float) * sampleSize - 1) / 64 + 1) * 64;

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

cl float* inputA = (cl float*) aligned malloc(optimizedSizeFloat, 4096);
cl float* outputC = (cl float*) aligned malloc(optimizedSizeFloat, 4096);
if (NULL == inputA || NULL == outputC)
{
LogError ("Error: aligned malloc failed to allocate buffers.\n");
return -1 ;
}
// Generate Random Input
data: :generateInputCLSeq(inputA, sampleSize, 1);

// Create OpenCL buffers from host memory for use by Kernel

cl float8 coeffs = {1,2,3,4,5,6,7,0};

cl mem Srch; // hold first source buffer

cl mem dstMem; // hold destination buffer

if (CL_SUCCESS != CreateReadBufferArg(&ocl.context, &srcA, inputA, sampleSize, 1))
return -1;

if (CL _SUCCESS != CreateWriteBufferArg(&ocl.context, &dstMem, outputC, sampleSize, 1))

return -1;

// Create and build the OpenCL program - imports named cl file.
if (CL SUCCESS != ocl.CreateAndBuildProgram(FILENAME))
return -1;

// Create Kernel - kernel name must match kernel name in cl file
ocl.kernel = clCreateKernel (ocl.program, "Resample", &err);

if (CL SUCCESS != err)

{

LogError("Error: clCreateKernel returned %s\n", TranslateOpenCLError(err));
return -1;

}
// Set OpenCL Kernel Arguments - Order Indicated by Final Argument
if (CL SUCCESS !'= SetKernelArgument (&ocl.kernel, &coeffs, 0))
return -1;
if (CL SUCCESS != SetKernelArgument (&ocl.kernel, &srchA, 1))
return -1;
if (CL_SUCCESS != SetKernelArgument (&ocl.kernel, &dstMem, 2))

return -1;

// Enqueue Kernel (wrapped in profiler timing)
ProfilerStruct profiler;
profiler.Start();
size t globalWorkSize[l] = { sampleSize };
// hard code work group size after finding optimal solution with KDF Sessions
size t localWorkSize[l] = { 16 };
if (CL_SUCCESS != ocl.ExecuteKernel (globalWorkSize, 1, localWorkSize))
return -1;
profiler.Stop()
float runTime = profiler.Log();

if (!SKIP_VERIFICATION)
{

103 // Map Host Buffer to Local Data

104 cl float* resultPtr = NULL;

105 if (CL_SUCCESS != MapHostBufferToLocal (&ocl.commandQueue, &dstMem, sampleSize, 1, &resultPtr))
106 {

107 LogError("Error: clEnqueueMapBuffer failed.\n");

108 return -1;

109 }

110

111 // VERIFY DATA

112 // We mapped dstMem to resultPtr, so resultPtr is ready and includes the kernel output !!!
113 // Verify the results

114 bool failed = false;

115 /// QTODO WRITE SEQUENTIAL VERIFICATION CODE

116 /*

117 float cumSum = 0.0;

118 for (size t i = 0; 1 < sampleSize; ++1i)

119 {

120 cumSum += inputA[i];

121 if (resultPtr[i] != cumSum)

122 {

123 LogError ("Verification failed at %d: Expected: $f. Actual: $f.\n", 1, cumSum, resultPtr[i]);
124 failed = true;

125 }

126 }

127 */

128 if ('failed)

129 LogInfo("Verification passed.\n");

130

131 // Unmap Host Buffer from Local Data

132 if (CL_SUCCESS !'= UnmapHostBufferFromLocal (&ocl.commandQueue, &dstMem, resultPtr))
133 LogInfo ("UnmapHostBufferFromLocal Failed.\n");

134 }

135

136 _aligned free(inputA);

137 _aligned free(outputC);

138

139 if (CL_SUCCESS != clReleaseMemObject (srcA))

140 LogError("Error: clReleaseMemObject returned '$s'.\n", TranslateOpenCLError(err));
141 if (CL_SUCCESS != clReleaseMemObject (dstMem))

142 LogError("Error: clReleaseMemObject returned '$s'.\n", TranslateOpenCLError(err));
143

144 results->WindowsRunTime = runTime;

145 results->HasWindowsRunTime = true;

146 results->0OpenCLRunTime = ocl.RunTimeMS() ;

147 results->HasOpenCLRunTime = true;

148 return 0;

149 }

150

151 int exSeq Resample(ResultsStruct* results)

152 {

153 return 0;

154 '}

155

156

157 //////7/7/7//7/////// QR DECOMPOSITION ///////////////
158 int exCL QRD(ResultsStruct* results)

159 {

160 return 0;

161 }

162

163 /*

164 * Sequential QR decomposition function

165 */

166 void QR(cl float* R, cl float* Q, cl uint arrayWidth, cl uint arrayHeight)
167 {

168 cl float a;

169 cl float b;

170 cl float c;

171 cl float s;

172 cl float «r;

173 cl float Rnewl[2048];

174 cl float Rnew2[2048];

175 cl float Qnewl[2048];

176 cl float Qnew2[2048];

177 for (int j = 0; j < arrayWidth; j++)

178 {

179 for (int i = arrayHeight - 1; i > j; i--)

180 {

181 // Calculate Givens rotations

182 a = RlarrayWidth * (i - 1) + j]1;

183 b = R[arrayWidth * i + j];

184 r = sqrt(a * a + b * b);

185 c=a/ r;

186 s =-b [/ r;

187 // Zero out elements in R matrix

188 for (int k = j; k < arrayWidth; k++)

189 {

190 Rnewl[k] = R[arrayWidth * (i - 1) + k] * ¢ - R[arrayWidth * i + k] * s;
191 Rnew2[k] = R[arrayWidth * (i - 1) + k] * s + R[arrayWidth * i + k] * c;
192 }

193 // Copy new values back to R matrix

194 for (int k = j; k < arrayWidth; k++)

195 {

196 R[arrayWidth * (i - 1) + k] = Rnewl[k];

197 R[arrayWidth * i + k] = Rnew2[k];

198 }

199 // Update Q matrix

200 for (int k = 0; k < arrayHeight; k++)

201 {

202 Qnewl[k] = Q[arrayHeight * (i - 1) + k] * ¢ + Q[arrayHeight * i + k] * s;
203 Qnew2[k] = -Q[arrayHeight * (i - 1) + k] * s + Q[arrayHeight * i + k] * c;
204 }

205 for (int k = 0; k < arrayHeight; k++)

206 {

207 Q[arrayHeight * (i - 1) + k] = Qnewl[k];

208 Q[arrayHeight * i + k] = QOnew2[k];

209 }

210 }

211 }

212

213 }

214

215 int exSeq QRD(ResultsStruct* results)

216 {

217 const cl uint arrayWidth = 3;

218 const cl uint arrayHeight = 5;

219 cl uint numIter = 10000; // Number of iterations for runtime averaging
220

221 // allocate working buffers.

222 // the buffer should be aligned with 4K page and size should fit 64-byte cached line
223 cl uint optimizedSize = ((sizeof(cl float) * arrayWidth * arrayHeight - 1) / 64 + 1) * 64;
224 cl float* A = (cl float*) aligned malloc(optimizedSize, 4096);

225

226 optimizedSize = ((sizeof(cl float) * arrayHeight * arrayHeight - 1) / 64 + 1) * 64;
2277 cl float* Q = (cl float*) aligned malloc(optimizedSize, 4096);

228

229 cl float Atmp[] = { 0.8147, 0.0975, 0.1576,

230 0.9058, 0.2785, 0.9706,

231 0.1270, 0.5469, 0.9572,

232 0.9134, 0.9575, 0.4854,

233 0.6324, 0.9649, 0.8003 };

234

235 cl float Qtmp[] = { 1.0, 0, 0, 0, 0,

236 0, 1.0, 0, 0, 0,

237 0, 0, 1.0, 0, 0,

238 0, 0, 0, 1.0, 0,

239 0, 0, 0, 0, 1.0 };

240

241 if (NULL == A)

242 {

243 LogError ("Error: aligned malloc failed to allocate buffers.\n");
244 return -1;

245 }

246

247 // Initialize A

248 for (int i = 0; i < arrayWidth * arrayHeight; i++)

249 {

250 A[i]l = Atmp[il;

251 }

252

253 // Initialize Q

254 for (int i = 0; i < arrayHeight * arrayHeight; i++)

255 {

256 Q[i] = Otmp[il];

257 }

258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

// add

ProfilerStruct profiler;
profiler.Start();

QR(A, Q, arrayWidth, arrayHeight)

profiler.Stop()
float runTime = profiler.Log();

_aligned free(A);
results->WindowsRunTime = (double)runTime;
results->HasWindowsRunTime = true;

return 0O;

return 0O;

Eric Wilson and Darrell Ross University of Washington
Project: Radar Resampling EFE 590, Winter 2017

References

[1] S. C. Kim and S. S. Bhattacharyya. “Implementation of a low-complexity low-latency arbitrary
resampler on GPUs”. In: 201/ IEEE Dallas Circuits and Systems Conference (DCAS). 2014,
pp. 1-4. DOI: 10.1109/DCAS.2014.6965333.

[2] Mitra. Digital Signal Processing: A Computer Based Approach. 4th International edition. Mc-
graw Hill Higher Education, 2010. 1SBN: 9780071289467. URL: http://amazon.com/o/ASIN/
0071289461/.

[3] Eric W. Weisstein. Least Squares Fitting—Polynomial. From MathWorld—A Wolfram Web Re-
source. Last visited on 21/2/2017. URL: http://mathworld.wolfram.com/LeastSquaresFittingPolynomi
html.

19

http://dx.doi.org/10.1109/DCAS.2014.6965333
http://amazon.com/o/ASIN/0071289461/
http://amazon.com/o/ASIN/0071289461/
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

	Introduction
	Process Overview
	Report Organization

	Concepts
	Sample Interval
	Least Squares Approximation
	QR Decomposition
	Givens Rotation
	Back Substitution

	Resampling

	Algorithms
	Interval Sample
	Least Squares Approximation
	Givens Rotations and QR Decomposition
	Back Substitution

	Resampling

	Performance
	Interval Sample
	Givens Rotations and QR Decomposition
	Back Substitution
	Resampling

	Analysis
	Resampling
	QR Decomposition

	Conclusions
	Appendix Algorithm Examples
	Least Squares Approximation
	Givens Rotation and QR Decomposition
	Back Substitution

	Appendix Kernels
	Resampling()

	Appendix Program Instructions
	Appendix Attachments

